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Abstract

Clouds play important roles in the climate system. Their optical and

microphysical properties, which largely determine their radiative property,

need to be investigated. Among several measurement means, satellite remote

sensing seems to be the most promising. Since most of the cloud aIgorithms

proposed so far are daytime use which utilizes solar radiation, Minnis et al.

(1998) developed a nighttime use one using 3.7-, 11- and 12-_tm channels.

Their algorithm, however, has a drawback that is not able to treat

temperature inversion cases. We update their algorithm, incorporating new

parameterization by Arduini et al. (1999) which is valid for temperature

inversion cases. This updated algorithm has been applied to GOES satellite
data and reasonable retrieval results were obtained.

1. Introduction

Regardless of the importance of clouds in the formation of the Earth's

climate, its quantitative understanding is yet to be done. One of the

important properties of clouds is the radiative property, which is determined

by the optical depth, droplet size, top temperature and so on. To determine

these cloud physical properties accurately is crucial, and it would lead to

contribution of improvement for cloud processes, which are not fully
resolved, in numerical models such as GCM (General Circulation Model).

Determination of cloud physical parameters using remote sensing

techniques has been conducted actively during the last decade. (e.g.,

Nakajima et al. 1991) In particular satellite remote sensing is promising in

view of large spatial coverage and constant temporal resolution. (e.g., Han et

al. 1994) Most cloud retrieval algorithms have been constructed only for

daytime and require solar spectral channels. Except for CO2-slicing



methods, techniques applicable to nighttime are rare because fewer

wavelengths are available. Since a consistent 24-hour retrieval of cloud

properties is indispensable for studies of cloud diurnal variability, the

hydrological cycle and cloud-radiation interactions, a nighttime cloud

algorithm using common infrared spectral channels has been developed for

application to both research and operational meteorological satellites. Our

method makes use of brightness temperature difference (BTD) for

determining the optical depth, droplet size and temperature of clouds (Inoue,

1985, Minnis et al. 1995). Minnis et al. (1998) developed parameterization

for reflectance and effective emittance of clouds in order to treat huge

satellite data set efficiently. Their parameterizations are, however, only valid

under the condition of the brightness temperature at cloud base, Ts minus the

cloud temperature, Tc > 4K. Then Arduini et al. (1999) constructed a

parameterization for brightness temperature (BT) of clouds under the

condition of Ts-Tc < 4K. This temperature range covers fog or temperature

inversion clouds, which are particularly common in polar regions. In this

article, we will report a case study with our nighttime cloud algorithm which

incorporated Arduini et al's parameterization In section 2, retrieval principles

of our method and Arduini et al's parameterization will be described, and in

section 3 satellite data and some other sounding data will be presented. We

will summarize results in the final section.

2. Method

1) Retrieval principles

The Solar-infrared Infrared Split-window Technique (SIST) uses 3.7-,

11- and 12-gm channels to invert three cloud parameters, that is, the optical

depth a:, effective water droplet radius re or effective ice particle diameter

De and temperature Tc of both water and ice clouds. Because of little

sensitivity of the particle size, we limit our analysis to clouds whose optical

thicknesses less than 6. In principle, these parameters can be determined by

matching BTDs between observation and model calculation as closely as

possible. The parameterization to calculate modeled BT will be presented in

the next subsection Meteorological data such as temperature, isobaric height

and relative humidity are taken from the nearest sounding data. Water vapor

absorption is based on the correlated k-distribution by Kratz (1995).



The analysis flow is as follows. In one particle model, "cis determined

at a given Tc so as to generate the modeled BT at 1 l-jam as closely as

possible to the observed counterpart, and then error between observed and

modeled BTDs which "cand Tc produce is calculated. We search Tc which

produces the minimum BTD error by bisection method between BT at 11-

gm and the maximum sounding temperature. This procedure is done for both

water and ice models, and then the pair of'c, re or De and Tc which results

in smaller BTD error between both phases is taken as solution. Phase

selection is, however, taken into account in some particular conditions. For

example, ice will be selected if Tc (ice) < 243K, or if both Tc (water) and Tc

(ice) < 253K, or if Tc (water) < 273K and re < 2.5gm. Water will be selected

if Tc (water) > 270K and Tc (ice) > 265K.

2) cloud-top BT parameterization for temperature inversion situations

To model the brightness temperatures (BT) of clouds, Arduini et al.

(1999) developed its parameterization under the condition of Ts-Tc < 4K,

that is, the cloud temperature is warmer than or similar to that of the

underlying layer. It is functions of "c,re and De, viewing zenith angle, Tc and

Ts, and z covers from 0.25 to 32, Tc ranges from 240K to 300K and viewing

zenith angle is up to 78 degrees. Water-droplet clouds were represented by

using modified Gamma distribution of spherical droplets having re from

2Jxm to 32gm. On the other hand, ice-crystal clouds were assumed to be

made up of distributions of hexagonal ice crystals whose optical properties

were based on the ray-tracing results of Takano and Liou (1989) and the

spheroidal approximation of Takano et al. (1992). De ranges from 6gm to

135gm.

An adding-doubling radiative transfer code was used to simulate

cloud-top BT, and then a standard linear least squares multiple regression

technique, which is similar to that of Minnis et al. (1998), was taken to

analyze the model results and to determine the parameterization. Results

show that this parameterization successfully describes the variation in the

temperature with the root mean square of the residuals well within 0.5K.

3. Data



In this work, we use GOES (Geostationary Operational

Environmental Satellite) data over Oklahoma on Oct. 26 1995. Well-defined

fog developed in the northern Oklahoma on that day. This area is suitable for

validating the present algorithm, since some ground measurements were

conducted at ARM (Atmospheric Radiation Measurement) site (36.6N,

97.5W).

Figure 1 shows the GOES IR (11-gm) imagery. Area enclosed by

square, where is darker than surroundings (it means warmer than nearby

ordinary clouds), corresponds the fog involved in this paper.

4. Result and concluding remarks

We analyzed the area indicated in Fig. 1 with the present algorithm.

Figure 2 shows the parameterization result for BTD between 3.7-gm and 11-

1am as a function of BT at 11-/am with regard to several values of 1;and re,

together with observation points superimposed. In this example, we set skin

temperature as 281K taken from the nearest measurement point. The cloud

height is retrieved about 0.8km, "_is retrieved about 0.4 to 1.2, and re is

inferred 4 to 12ptm. As for the cloud height, lidar at ARM site indicates

similar values to ours. Air temperature and dew-point temperature vertical

profiles from the sounding also support our retrievals as shown in figure 3.

Such a type of cloud occurs near the temperature inversion height in general,

and humidity is also found to be enhanced. As for re, these values seem to
be consistent with those of continental low clouds. In addition, surface

observers reported no drizzle which usually associated with larger droplets.

In particular, it might be very sensitive to input temperatures for

remote sensing techniques using infrared channels like the present

algorithm. We present another computation using the parameterization with

different skin temperature input in figure 4. We set it as 275K in this case.

Then re would be retrieved as much larger and we would get totally wrong

results. It clearly shows how it is important to use accurate temperatures.

In this paper, we have incorporated cloud BT parameterization for

temperature inversion cases by Arduini et al. (1999) to the nighttime cloud
analysis framework by Minnis et al. (1995). This new cloud analysis system

has been applied to low-level clouds found in GOES satellite imagery over

Oklahoma. Our retrieval for the cloud height is consistent with the lidar

result and sounding. As for re, the values seem to be reasonable. This



algorithm would be a powerful tool for global analysis and statistical study
of clouds, together with the one with Minnis et al. (1998).
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